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Corrosion Modeling to Relate Corrosion Damage

to the Environment
Dr. Alan Rose, Corrdesa LLC




Overview of corrosion analysis

Adapting to upcoming changes to MIL-STD-889
Quick analysis tools
CAE, multi-physics tools for fluids + electrochemistry

Reducing corrosion risk in
— Design

— Qualification

— Sustainment



* Modeling does not replace
testing
— You can only model what you know
in ways you know how to model
 But modeling is much faster and
cheaper than manufacturing,
testing and flying for 30 years

— It is a good way to reduce risk in
design and sustainment




For modeling and simulation to have any relevance in
aerospace and defense it cannot simply be pretty

For design, quick evaluation and scoping it must be

e Accurate, taking into account the most important variables

e Verified, validated, and ultimately accredited

* Based on qualified data for the relevant materials,
treatments, finishes



For detailed evaluation and simulation it must also
e Take into account the geometry of the assembly

e Take into account the time-dependent environment seen by the system,
including electrolyte, electrolyte thickness, etc.

e Take into account material degradation (i.e. t>0)

* Take into account different corrosion mechanisms
— Self-corrosion, galvanic, crevice, pitting, etc.



-____________________________________._....————.—————X—X——0.0........——— ...
The ONR Sea-Based Aviation (SBA) program has been developing
computational technology and verifying and validating the methodology for
Durable Aircraft (see Bill Nickerson briefing, SERDP-ESTCP Symposium 2018)

 Methods using finite element, finite volume, Boundary Element Methods,

 Computational methods using the mixed potential (curve crossing)
approach

* Incorporation of CFD for electrolyte properties, thickness
* Verification and Validation of these approaches per MIL-STD-3022



* Best Practices for electrochemical data acquisition
 Methods for deconvoluting and analyzing electrochemical data

* An electrochemical database of curated, validated data designed
to be used for computational corrosion and other electrochemical

analysis

So, yes corrosion modeling is ready for prime time



MIL-STD-889 now
being updated to
corrosion current
approach (Victor
Rodriguez-Santiago)
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Most galvanic tables and charts are based on half-century old materials and data



Principle is the well-known Mixed-potential
/curve crossing technique

— Crossing point of curves of V vs ABS(J) shows
mixed potential and interfacial galvanic current

— Conforms with upcoming revision of MIL-
STD-889C revision

Strictly, assumes 2 parallel surfaces of equal
area in bulk solution with high conductivity

— Reports self corrosion rate and predicts galvanic
corrosion rate based on galvanic current

— In practice it works well with non-parallel
surfaces and thin films (with the thin film
polarization data)

1e-g8 1e7 1§ Te-d 13 1328
XAxME
Groupl +
Material Group Modify ~ Copy

Environment 3.3% MNadl

Material 1 (Anode)

Substrate Al
Designation T075-T6
Coating None

Treatment Nane

ocp

Self Corrosion Rate

Galvanic Acceleration Factor

Potential Difference

Mixed Potential

Galvanic Corrosion Current Density

Galvanic Corrosion Rate

7881 Ve

1.84e+1 microns/year

7.35e-1 mils/year

6.72e+0

Material 2 (Cathode)

Substrate Stainless steel

Designation 15-5PH

Coating Mone
Treatment Mane
ocp

Self Corrosion Rate

Galvanic Acceleration Factor

7561V

7.00e-1 Vece

110e-1 Am™

1.23e+2 microns/year

4.54e+0 mils/year

37982 Varr

3.57e-2 microns/year

1.43e-3 mils/year
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https://corrosiondjinn.com/

Djinn Quickie Demo




MIL-STD-3022, 2012 APPENDIX C V&V REPORT
Corrosion Djinn™ curve crossing galvanic corrosion predictor

V&V REPORT FOR CORROSION DJINN
GALVANIC CORROSION SOFTWARE

* Corrosion Djinn curve crossing is
verified and validated

e Siemens Star CCM+ is already o
Verified, Validated and Accredited

— Available on DoD HPC platform

Galvanic couple FEA Corrosion Measured

prediction | Djinn volume loss
Doc type: Verification & Validation Report

0 rEd |ct|on ONR Contract Number: N00014-16-C-1003, Innovative Approaches for Predicting
Galvanic Effects of Dissimilar Material Interfaces

CFC_7075 ba re 1 25 m m3 1 25 m m3 0 84 m m3 Office of Naval Research Program Manager: William Nickerson
; 3 3 1 3 3 S::Z:)rs: ZK/ﬁigr}zlbi%g (Lead Investigator), Siva Palani
CFC-7075 SAA 1.16 mm 1.1 mm .3 mm Date: s

Corrdesa LLC, 105 Glendalough Ct, Suites H & I, Tyrone, GA 30290, USA. (770) 328-1346

Insulator
Corrosion Djinn V&V Report Ver3.doex. Proprictary Information (DFARS — SBIR Data Rights); November 13, 2017. Requests for this
document should be referred to Alan Rose, arose@ Corrdesa.com

© Corrdesa 2016, Page 1 of 56

Cathode
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The Best Practices document for the
ONR SBA Team defines the procedures
for acquiring high quality polarization
data in a consistent manner for
incorporation into the Electrochemical
Database

The Best Practices document for MIL-
STD-889C Technical Revision defines
how team members should take data
for validation of the acquisition
technique

Best Practices for Corrosion Data
Acquisition:

Vol. 1 Polarization Data for Galvanic
Corrosion Prediction

UPDATED, October 2013

Prepared for Sea Based Aviation Team

Alan Rose arose@corrdesa.com, 770.328.1346
Keith Legg klegg@corrdesa.com, 847.680.9420

Siva Palani spalani®corrdesa.com, 470.426.4118
Corrdesa LLC

Corrdesa LLC, 105 Glendalough Ct, Suites H&I, Tyrone, GA 30290; www.corrdesa.com; 770-683-9868
Document5

1

[Best Practices for Polarization Data Acquisition: Data
Collection Guide for MIL-STD-889C Technical Revision

Prepared by:

Naval Air Systems Command

For:

Collection of Electrochemical Data for MIL-5TD-889C Technical Revision
Version 4: FINAL

POC:

Victor Rodriguez-Santiago, Ph.D.

Naval Air Systems Command - NAVAIR
Corrosion and Wear Branch - Code 4.3.4.6
Ph: 301-342-8040

Fax: 301-995-0742
victor.rodriguezsant@navy.mil

Anna Safigan

Naval Air Systems Command - NAVAIR
Corrosion and Wear Branch - Code 4.3.4.6
Ph: 301-995-6549

anna.safigan: .mil

March 2018

NAVAIR Public Release 2018-289. Distribution Statement A — “Approved for public release; distribution is

unlimited"”
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Polarization curves can be

deconvoluted into the anodic and

cathodic electrochemical
reactions that create them using
a fitting technique

Deconvolution makes it possible
to create a well-defined curve
and accurately determine self-
corrosion rate and OCP

File: I-Plate HC.exp  Filterid: 1 Sigma: 0.051

POTENTIAL, MV
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Thinner electrolyte layers

Current Density [A/m?]

Under thin films CEC cathodic

reaction increase
due to ability to
support higher O,

T

reaction under

Potentialvs SCE

electrolytes

-’
"

——AIl7050-T7 Bare_Anodic
« CFCin 60 pum thin film

=== CFCin 20 pum thin film
——CFC in bulk electrolyte

allow O, to diffuse to surface more
rapidly causing more rapid
corrosion

constrain galvanic current close to
the interface

Result:
* rapid, deep corrosion at
interface

Thin electrolytes (condensates)
increase corrosion often by ~10x

15
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* Database of qualified,
consistent polarization data
taken using Best Practices

* Constantly being expanded

Edit

Edit

Edit

Edit

Edit

Edit

Edit

Edit

Edit

Edit

'4412345“7»»

Remove

Remove

Remove

Remove

Remove

Remove

Remove

Remove

Remove

Remove

Substrate

Titanium

Aluminum

Aluminum

Aluminum

Aluminum

Carbon Fiber Composite

Carbon Fiber Composite

Stainless steel

Stainless steel

Nickel alloy

Designation

Ti6AI4V Hi-Lok Pin

7050-T7451

2024-T3

7050-T7451

7050-T7451

Prepreg

Prepreg

15-5 PH

15-5 PH

200

51 - 60 of 63 items

Coating

None

None

SAA

None

SAA

None

None

None

None

None
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Film Thickness micron
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Electrolyte thickness is highly

variable
* By location on complex
assemblies

* Qvertimein real
atmospheric conditions
with diurnal humidity
changes, rain

e With mission parameters,
such as temperature,
elevation, etc.

These all cause large

variations in electrolyte

thickness, concentration,
hence local corrosion rate

Film thickness- Corrosion depth@28days (um)-
Laplacian Potential Model

CFD Liguid Film Model

SIEMENS
STAR-CCM+




Modeling the electrolyte (Variable thinfilm)

3
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§ ] 3 [ —— ] E ) ! = Thin film thin P
-2.10 -3.02 -293 -2.85 277 -268 -2.80 -2.52 -2.44 -2.35 -2.27 -: | -\ J Var ﬂlm Var P
millimeters 'E | I
@ -200 H i
al |87 ~
W ) i !
Sk L I
. = 250 |- !
g Wl|l 31 [ ..-Lf 1 I ] I 1 I I I 1 I I I |
£ = 0 2000 4000 G000 8000
\ / o} Distance from Interface (microns)
ik
‘ ] 2.00 4.00 6.00 .00 10.00
i g Ls _ald milimeters
Test Case 2- Test Case 2-
Before After Test

19



We are using CAE to design metal-rich primers and polymers

* Predict how the pigments will corrode

* Predict how the primer will protect airframes

Electrolyte I

| &8
.| Conductivity- ff"[t
)}‘l 1E35/m ___—EEEE
:é,;re
— A\’2_0’)—A-

or2s

Potential in scribe through Al-rich primer
with TCP-treated pigment particles. Primer
keeps Al surface below pitting potential

-1.1006 -1.0630 -1.0254 -0.9877

r g

J

Polydispersed primer model showing mesh and
potential fields on particles
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HOW DOES MODELING HELP DESIGN,
QUALIFICATION AND SUSTAINMENT?



-____________________________________._....————.—————X—X——0.0........——— ...
* Djinn is designed for rapid analysis of galvanic interfaces by the
non-expert
— Quick analysis of interfaces including coatings and treatments
— Ability to choose alternatives
— The method can be used to formulate better design rules
— A version is intended for integration into CAD software as a tool for use
during design
* CAE is a multi-physics approach that can be used in parallel with
stress analysis, heat analysis, etc. to validate design
— Part of the suite of tools engineers use for analysis during design

22



The major parts of the time and cost of qualification are

e Qualifying new materials — especially when we must replace chromates,
cadmium, etc.

* Qualifying assemblies

— In this case we can calculate how critical parts of the assembly will behave both
in B117 and “the real world”

— We can make and “test” modifications in models much more cost-effectively
than redesigning and retesting

— Then just need to verify our design modifications by testing rather than retesting

 Modeling does not eliminate testing, but if used correctly it can reduce
mistakes and point to optimum materials and designs

23
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0 1 L 1
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2

Potentiostat/ZRA

Z. Feng, G.A. Frankel, W.H. Abbott, C.A.
Matzdorf, “Galvanic Attack of Coated Al All
Panels Laboratory and Field Exposure”,
Corrosion 72 (2016); p. 342.

oy

13.802

11.362

Case Peak Corrosion Current
Current per fastener (HA)
I Density
(A/m2)
53316 stagnant data 0.07 0.47
55316 50 um pol data, bulk fluid model 8.8 43.7
53316 50 um pol data — fluid shell model 16.4 37.5
Experimental-B117 (Feng et al.) - 50

Table 1. Comparison of current density and corrosion current per fastener
under thick, stagnant electrolyte and thin-film electrolyte.
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Cathode Anode OCP Al ocCP Self-corr Galvanic Galv Accel

(V SCE) Cathode rate Al corrrate Al Factor
(VSCE) (um/yr)  (um/yr)

15-5PH Al-7075- -0.74 -0.38 8.90E-03 85.1 9520

stainless T6 BSAA

Ti6Al4V Al-7075- -0.74 0.033 8.90E-03 1.55 173
T6 BSAA

* When airframe corrodes around bolt holes,
typically remove damaged Al and bush with
stainless bushing

* Analysis shows Ti64 much better

* But Ti64 Hi-Lok worse than plain Ti64 —
presumably because it is stressed

e And Ti3Al2.5V Hi-Lok collar worse than 15-
5PH bushing

Y Axis

1.033

0.8

0.6

0.4

0.2

OGIM @G1M2

G2M2 ®G3IM1 @G3M2 @G4M1 G4:M2

-0.2

04

-0.6

-0.8

-1.2

-1.4

-1.6

-1.8

-2
1e-8

Ti3AIl2.5V Hi-Lok collar
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* Djinn is fast enough and simple enough to use
as a scoping tool to predict high corrosion ris
interfaces throughout a platform |

— And provides a way to evaluate alternative
materials and coatings

* CAE is required for complex situations
— Complex assemblies, multiple-material interfaces

— Lifing with real-life, variable electrolyte layers,
coating degradation, etc

27
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Capabilities Limitations
* Galvanic corrosion and self-corrosion * We cannot calculate ab initio

— Prediction of corrosion rates and damage — Requires accurate polarization and other

evolution electrochemical data

* Fluid dynamics of electrolyte layers — Requires t>0 data for long-term prediction
e Cyclic conditions * We do not have reliable models for

— Temperature, humidity, rainfall everything, e.g.

— Test conditions — B117 and cyclic — Crevice corrosion

— Pitting

e We must have reliable data on the
corrosion environment

28
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